Automatic Classification of Drum Sounds: A Comparison of Feature Selection Methods and Classification Techniques
نویسندگان
چکیده
We present a comparative evaluation of automatic classification of a sound database containing more than six hundred drum sounds (kick, snare, hihat, toms and cymbals). A preliminary set of fifty descriptors has been refined with the help of different techniques and some final reduced sets including around twenty features have been selected as the most relevant. We have then tested different classification techniques (instance-based, statistical-based, and tree-based) using ten-fold cross-validation. Three levels of taxonomic classification have been tested: membranes versus plates (super-category level), kick vs. snare vs. hihat vs. toms vs. cymbals (basic level), and some basic classes (kick and snare) plus some sub-classes –i.e. ride, crash, open-hihat, closed hihat, high-tom, medium-tom, low-tom(sub-category level). Very high hit-rates have been achieved (99%, 97%, and 90% respectively) with several of the tested techniques.
منابع مشابه
Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملAutomatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کامل